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ABSTRACT 27 

Arrowtooth Flounder Atheresthes stomias and Kamchatka Flounder Atheresthes evermanni are 28 

upper trophic level predators which have been considered trophically equivalent in their 29 
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sympatric range. Here, we present evidence against trophic equivalence of these sibling species 30 

based on flounder size and space-stratified analyses of stomach contents data from 5,724 31 

flounders sampled from the eastern Bering Sea (EBS) during summer 2007-2016. We found 32 

interspecific trophic niche separation occurred between flounders ≤39 cm fork length, before 33 

convergence at larger size classes. Our findings are consistent with the hypothesis that foraging 34 

efficiency differences arise due to divergence in gill raker counts. Arrowtooth Flounder have 35 

more gill rakers than Kamchatka Flounder and consistently consumed more zooplankton than 36 

Kamchatka Flounder, while Kamchatka Flounder typically consumed more benthic fishes. While 37 

a benthivory-zooplanktivory axis of resource partitioning is common among sympatric trophic 38 

polymorphs in freshwater ecosystems, our findings are novel for marine sibling species and 39 

flatfishes (Pleuronectiformes). Abundance estimates for both Arrowtooth Flounder and 40 

Kamchatka Flounder have substantially increased in Alaska in recent years, and we suggest 41 

trophic niche separation alleviates interspecific competition, which may buffer sympatric 42 

carrying capacities for Arrowtooth Flounder and Kamchatka Flounder. 43 

 44 

 45 

INTRODUCTION 46 

Arrowtooth Flounder, Atheresthes stomias and Kamchatka Flounder, Atheresthes 47 

evermanni are large-mouth flatfishes, sympatric in the Bering Sea, Aleutian Islands and 48 

southwestern Gulf of Alaska. Morphological differences between species are subtle, such that 49 

field identification confidence during stock assessment surveys conducted by the National 50 

Marine Fisheries Service was only moderate through 2008 (Stevenson and Hoff 2009). The 51 

primary morphological differences are the position of the left eye, which is on the dorsal margin 52 

of the body in Arrowtooth Flounder and below the dorsal margin in Kamchatka Flounder, and 53 

higher gill raker counts on each of the first three gill arches in Arrowtooth Flounder 54 

(Wilimovsky et al. 1967; Yang 1988). Gill rakers of both species are lathe-shaped and of 55 

moderate length (Yang 1991), but Arrowtooth Flounder have a combined 28-37 gill rakers on the 56 

first three gill arches (mean: 31.4), while Kamchatka Flounder have 19-29 gill rakers (mean: 57 

24.8; Yang 1988; M.S. Yang, unpublished data). 58 

Interspecific morphological differences suggest foraging capabilities are likely to differ 59 

between Arrowtooth Flounder and Kamchatka Flounder which, hypothetically, could confer a 60 
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mutually beneficial ecological advantage where they co-occur. Phenotypic divergence of feeding 61 

structures is common among sympatric sibling species and conspecific polymorphs (Smith and 62 

Skúalson 1996; Ward et al. 2006), and can facilitate alleviation of resource competition through 63 

resource specialization (Swanson et al. 2003). A common pattern of niche separation occurs 64 

between sympatric benthic specialists and zooplankton specialists, where zooplankton specialists 65 

have higher gill raker counts (Wimberger 1994; Smith and Skúalson 1996) that increase capture 66 

efficiency for small-bodied zooplankton prey (MacNeill and Brand 1990; Sanderson et al. 1991; 67 

Link and Hoff 1998; Roesch et al. 2013).  Thus, Arrowtooth Flounder may be more efficient 68 

zooplankton consumers than Kamchatka Flounder. However, the only prior comparative diet 69 

study between species concluded Arrowtooth Flounder and Kamchatka Flounder are “trophically 70 

equivalent,” and that interspecific competition was unlikely to be important due to a high 71 

abundance of prey resources in the eastern Bering Sea (Yang and Livingston 1986).  72 

In this paper, we re-examine the trophic equivalency of Arrowtooth Flounder and 73 

Kamchatka Flounder in the eastern Bering Sea (EBS) using a larger data set than was available 74 

for the earlier comparative diet study. Yang and Livingston's (1986) study design may not have 75 

allowed detection of interspecific trophic niche differences because their available sample size 76 

was relatively small, covered a limited spatial extent, and was collected during a two-week 77 

period in a single year. In addition, the importance of resource competition between Atheresthes 78 

has likely increased since Yang and Livingston's (1986) study because aggregate Arrowtooth 79 

Flounder and Kamchatka Flounder biomass has increased four-fold within their sympatric range 80 

(Spies et al. 2016; Wilderbuer et al. 2016). Based on spatial biomass trends, Zador et al. (2011) 81 

suggested that Arrowtooth Flounder may be near carrying capacity in some parts of the EBS. 82 

Under these conditions, resource competition may have increased, and the expression of 83 

morphology-based resource partitioning, or trophic niche separation, between Arrowtooth 84 

Flounder and Kamchatka Flounder may be more pronounced (Svanbäck and Bolnick 2007). As 85 

such, we address three main questions:  86 

1. Do the trophic niches of Arrowtooth Flounder and Kamchatka Flounder differ within 87 

their sympatric range?  88 

2. If so, does trophic niche separation persist spatially and across predator size classes?  89 

3. Are patterns of trophic niche partitioning consistent with expectation based on 90 

interspecific differences in feeding structure morphology? 91 
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 92 

METHODS 93 

 94 

Study area and sample collection 95 

The eastern Bering Sea (EBS) is a large coastal ecosystem with a broad (~500 km) 96 

continental shelf that gradually increases in depth to ~200 m, before an abrupt depth increase 97 

along the continental slope into the deep Aleutian Basin (Fig. 1).  Strong seasonal dynamics and 98 

inter-annual environmental variability influence EBS community spatial structure. 99 

Diet data used in this study were collected during summer (June-August) bottom-trawl 100 

surveys conducted by NOAA’s Alaska Fisheries Science Center from 2007 through 2016. 101 

Bottom-trawl surveys of the EBS shelf were conducted annually (e.g., see Conner et al. 2017), 102 

and bottom-trawl surveys of the EBS slope were conducted biennially, except 2014 (Hoff 2016). 103 

Survey designs and sampling gear differed for the EBS shelf and EBS slope due to differences in 104 

stock assessment needs and substrate types.  The EBS shelf survey sampled across a regularly-105 

spaced grid (20 nmi x 20 nmi) of 376 stations, at ~15-200 m bottom depth, with higher density 106 

sampling in areas of historically high crab abundance around St. Matthew, St. Paul and St. 107 

George Islands (Lauth and Nichol 2013).  EBS slope survey samples were randomly stratified by 108 

sub-areas and depth (200-1200 m), and ~200 stations were sampled per survey (Hoff 2013).  109 

Stomachs were collected from specimens of Atheresthes at a subset of survey stations 110 

following a size-stratified sampling scheme (Livingston et al. 2017). Up to 15 stomachs were 111 

collected per station.  Fish were examined for evidence of regurgitation (i.e., prey in the mouth, 112 

flaccid stomach) or net-feeding (i.e., undigested prey in the mouth), and whole stomachs were 113 

sampled from fish not displaying evidence of regurgitation or net-feeding. Predator species, fork 114 

length (cm), sex and collection location were recorded for each sample. Stomachs were fixed in 115 

neutral-buffered 10% formalin, then transferred to 70% ethanol for storage prior to stomach 116 

contents analysis. Stomach samples used for this study were collected during 2007-2016 EBS 117 

shelf surveys, and 2008, 2010, 2012 and 2016 EBS slope surveys. An average of 518 non-empty 118 

Atheresthes stomachs were sampled per EBS shelf survey, and an average of 137 non-empty 119 

stomachs were sampled per EBS slope survey (Table 1). 120 

Stomach contents analysis was performed by analysts in the Resource Ecology and 121 

Ecosystem Modeling Task Trophic Interactions Laboratory at NOAA’s Alaska Fisheries Science 122 
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Center (AFSC; Seattle, WA) following standardized laboratory protocols (Livingston et al. 2017).  123 

Briefly, prey items were identified to the lowest practical taxon, fish and crab prey were 124 

enumerated, and prey weights were recorded to the nearest milligram. 125 

  126 

Data analysis 127 

Multivariate analyses were used to compare trophic niche variation between species, over 128 

flounder size and space, based on broad prey categories. Prey categories were assigned based on 129 

a priori knowledge of important prey categories identified in previous diet studies of Arrowtooth 130 

Flounder and Kamchatka Flounder: benthic fishes, assorted pelagic fishes and squids, gadids 131 

(Family Gadidae, mostly Walleye Pollock), shrimp (Suborders Dendrobranchiata and 132 

Pleocyemata), unidentified fishes, non-shrimp benthic invertebrates, zooplankton (mostly Order 133 

Euphausiacea), and “other.” Stomachs containing fisheries discards (offal) were omitted prior to 134 

analysis (1.6% of stomachs). Flounder groups were aggregated by species, size and spatial area. 135 

Flounders were divided into five size classes based on fork length (≤19 cm, 20-29 cm, 30-39 cm, 136 

40-49 cm, and ≥50 cm) to allow interspecific comparisons between flounders expected to have 137 

similar stomach capacity and diet composition. Size classes were informed by the four size 138 

classes (≤200 mm, 201-300 mm, 301-400 mm, >400 mm) used by Yang and Livingston (1986), 139 

but were adjusted based on size class designations used in NOAA’s standardized stomach 140 

sampling protocol (Livingston et al. 2017), along with the availability of more samples from 141 

larger-sized flounders for our analysis. Spatial areas were designated using five EBS shelf strata 142 

(A-E) roughly delineating areas with distinct oceanographic features and community 143 

composition (Stauffer 2004), and a 200-600 m bottom depth stratum along the EBS slope 144 

(stratum F; Fig. 1). Flounder groups from areas where Atheresthes were scarce, sympatry was 145 

weak, or sample sizes were small (< 10 non-empty stomachs) were excluded from analysis. 146 

Overall, 10,110 specimens were assigned among 56 groups, of which 5,762 specimens from 55 147 

groups had non-empty stomachs (Table 2). Adequate sample sizes for analyses were available 148 

for 46 groups containing 5,724 non-empty stomachs (Table 2). Proportional wet weights of prey 149 

were calculated for the groups of non-empty flounder stomachs (%Wi,k,l,s): 150 

%��,�,�,� = ∑ ��,�,�,�,����=1∑ ∑ ��,�,�,�,����=1���=1  
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where W is wet weight of prey category i, from the stomach of flounder j, flounder size class l, 151 

flounder species s, and spatial stratum k; ni is the number of prey categories, and nj

Hierarchical clustering and ordination were used for multivariate statistical analysis of 156 

diet data.  Hierarchical clustering was conducted to determine which flounder groups had 157 

greatest diet similarity and to evaluate which group dimensions (size, stratum, or flounder 158 

species) influenced diet similarity. Ordination was performed to determine the relative influence 159 

of prey categories on differences between flounder groups.  160 

 is the number 152 

of non-empty stomachs collected for the flounder group. A Bray-Curtis diet dissimilarity matrix 153 

(Bray and Curtis 1957) was calculated from the flounder group proportional diet data for 154 

multivariate statistical analysis.   155 

Similar-sized flounders have more similar diets than different-sized flounders, and a 161 

strong ontogenetic shift from shrimp prey to fish prey has been identified for Atheresthes in the 162 

EBS (Yang and Livingston 1986). Since the purpose of this analysis was to identify descriptive 163 

differences in flounder group association, rather than synoptic patterns of ontogenetic diet shift, 164 

we used space-dilating hierarchical clustering algorithms (flexible beta with β parameter varying 165 

from -0.5 to -1.0, and complete linkage clustering) to increase contrast within size classes. 166 

Space-dilating algorithms may increase the likelihood of producing small or orphan clusters, but 167 

they can also preserve ecologically meaningful differences by requiring a more stringent 168 

criterion for assigning cluster membership (Legendre and Legendre 2012). We used cophenetic 169 

correlation to compare clustering algorithm performance. An appropriate number of clusters was 170 

determined from examination of a scree plot of cluster dissimilarity attained across a range of 171 

clusters, and through index-based evaluation of relevant clusters using R package ‘NbClust’ 172 

(Charrad et al. 2014).   173 

After relevant clusters were identified, an ANOSIM test was used to test statistical 174 

significance of global clusters. ANOSIM is a non-parametric rank-based permutation test which 175 

compares within-cluster similarity to between cluster similarity (Clarke 1993). The ANOSIM R 176 

statistic ranges from -1 to 1 and indicates the level of similarity between clusters, where 1 177 

indicates all flounder groups within a cluster are more similar to each other than to groups from 178 

other clusters, while an R of 0 indicates no difference between clusters. Significant differences 179 

between clusters were also tested using pairwise ANOSIM tests. Global and pairwise ANOSIM 180 

tests used 999 random permutations to generate sample distributions for significance tests. 181 
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SIMPER analysis (Clarke 1993) was then used to determine which prey categories were most 182 

different between clusters. 183 

Non-metric multidimensional scaling (NMDS) ordination (Kruskal 1964) was performed 184 

on the diet dissimilarity matrix to determine which prey categories were associated with flounder 185 

group dissimilarity. NMDS was chosen over other ordination methods because predator group 186 

diet data were not multivariate normally distributed, and relative differences between groups 187 

were more important than absolute differences. Random starting placements (up to 100) were 188 

used to find a convergent ordination solution, and an appropriate number of dimensions for the 189 

ordination (k) was determined by examining stress values on a scree plots for 1-8 k-dimensions. 190 

Statistical significance of the final ordination was tested using a random permutation test (999 191 

permutations) and goodness-of-fit was evaluated based on the correlation between the observed 192 

dissimilarity and ordination distance on a Shephard diagram. Prey loadings in ordination space 193 

were calculated using linear correlation analysis, and statistical significance of prey category 194 

loadings were tested using a random permutation test. Differences between flounder groups were 195 

evaluated from visual inspection of NMDS plots. If NMDS plots indicated a consistent diet 196 

difference between interspecific flounder pairs sharing size class and stratum, a two-tailed sign 197 

test was conducted to test the null hypothesis of interspecific trophic equivalence (Zar 1999).  198 

Under the null hypothesis, a flounder group would be equally likely to have a higher or lower 199 

proportion of a prey type as its interspecific counterpart from the same size class and stratum.   200 

Proportional wet weight of prey provides a relative measure of prey contribution to diet, 201 

but does not reflect absolute consumption of a prey type. To ensure that results of multivariate 202 

analyses were not simply a reflection of interspecific biases in overall prey consumption, we 203 

compared stomach fullness indices and prey frequency of occurrence (%F) among non-empty 204 

stomachs to make interspecific comparisons of consumption. Fullness indices followed Lilly 205 

(1991) except in lieu of cubed length (L3), we used estimated flounder biomass calculated from 206 

length-weight regressions (Mj), available from NOAA/AFSC’s Grounndish Trophic Interactions 207 

Database (Livingston et al. 2017). Total fullness index (TFI) was calculated as: ���� =208 ∑ �����=1 ��−1 ∙ 104, where Wi,j is the wet weight of prey type i in flounder stomach j, Mj is 209 

estimated biomass of the flounder j, and Q is the number of prey categories. PFI was calculated 210 

as: ����,� =��,���−1 ∙ 104. Prey types for PFI calculations were the same as for multivariate 211 

analyses. When adequate sample sizes were available (≥10 non-empty stomachs), tested for 212 
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significant interspecific differences between fullness indices for size class-stratum flounder pairs 213 

using the two-tailed Mann-Whitney test. We used the non-parametric Mann-Whitney test 214 

because fullness index distributions were non-normal and PFI had a high proportion of zeroes.  215 

 216 

RESULTS 217 

Prey types consumed by Arrowtooth Flounder and Kamchatka Flounder were 218 

qualitatively similar and four hierarchical clusters were relevant for describing predator diets 219 

(Fig. 2). Complete linkage clustering (Sørensen 1948) provided the best hierarchical clustering 220 

performance (cophenetic correlation r2

 Gadids, shrimp, zooplankton and benthic fishes contributed most (≥70%) to between 236 

cluster dissimilarity, but ranked contribution to differences varied among cluster pairs (Table 3). 237 

A global ANOSIM test revealed significant differences across clusters (R = 0.96, P = 0.001), and 238 

five out of six pairwise ANOSIM tests identified significant and substantial diet differences 239 

between clusters (0.91 ≤ R ≤ 1.00; Table 3). Clusters Y and Z were not significantly different, 240 

although an ecological difference was not convincingly rejected due to small cluster membership 241 

and a low p-value (P = 0.09).

 = 0.89). Cluster W included mostly predators in 20-29 cm 221 

and 30-39 cm size classes, but also included Stratum C Arrowtooth Flounder ≤19 cm and 222 

Stratum F Kamchatka Flounder ≥ 50 cm. Cluster X had the largest group membership, including 223 

all large size classes (40-49 cm, ≥ 50 cm) except Cluster F Kamchatka Flounder ≥50 cm. Six 224 

small and medium size classes were also in Cluster X. Cluster Y only contained the smallest size 225 

class (≤19 cm), and included both species. Cluster Z contained only smaller size classes (≤19 cm, 226 

20-29 cm) of Kamchatka Flounder. All stratum B size class pairs showed concordant cluster 227 

membership, indicating greater interspecific diet overlap than in other strata for which at least 228 

three size classes were represented. Among small and medium size classes (≤19 cm, 20-29 cm, 229 

30-39 cm), the only interspecific predator group pair sharing cluster membership, aside from 230 

stratum B, were 30-39 cm size classes in stratum D. Overall, interspecific pairs of small and 231 

medium size class predator groups were in different clusters 63.6% (7/11) of the time. Within 232 

Cluster W, there was a considerable distance between a branch where seven out of eight leaves 233 

were medium size class Arrowtooth Flounder, and a monospecific Kamchatka Flounder branch. 234 

This difference occurred at a dissimilarity of 0.56, slightly below the phenon line at 0.6.  235 

  242 
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Important prey categories in the best NMDS ordination were consistent with the prey 243 

categories that contributed most to hierarchical cluster dissimilarity (Table 3; Fig. 3). NMDS 244 

diagnostics indicated a two-dimensional (k = 2) ordination was appropriate, and the ordination 245 

resulted in a stress value of 0.09 (Fig. 4). More of the variation was explained by the ordination 246 

than expected by random chance (P < 0.001) and fit to the data was good (non-metric r2 = 0.99). 247 

Benthic fishes (P < 0.001, r2 = 0.37), gadids (P < 0.001, r2 = 0.91), shrimp (P < 0.001, r2 = 0.71) 248 

and zooplankton (P < 0.001, r2 = 0.50) categories had highly significant vector loadings. Benthic 249 

invertebrates (P = 0.01, r2 = 0.06), unidentified fishes (P = 0.04, r2 = 0.02), and other (P = 0.01, 250 

r2 = 0.05) prey categories had statistically significant vector loadings but, compared to the highly 251 

significant prey vectors, did not account for much of the variation in ordination space (low r2-252 

values) so were omitted from the NMDS plot (Fig. 3). Miscellaneous pelagic fishes and squids 253 

were not significant (P = 0.31, r2

Shrimp and gadid vectors were divergent and were associated with an ontogenetic shift in 255 

diet (Fig. 3).  Smaller Atheresthes were more strongly associated with the shrimp vector, while 256 

larger Atheresthes had a higher proportion of gadids in their diet. Zooplankton and benthic fish 257 

prey categories were divergent and were associated with trophic niche separation between 258 

Arrowtooth Flounder and Kamchatka Flounder. Among small and medium flounder size classes 259 

(≤19 cm, 20-29 cm, 30-39 cm) there was a consistent within-stratum difference between 11 size 260 

class pairs of Arrowtooth Flounder and Kamchatka Flounder. Arrowtooth flounder were more 261 

strongly associated with zooplankton prey, and Kamchatka Flounder were more strongly 262 

associated with benthic fish prey, suggesting interspecific trophic niche separation occurred 263 

along a benthic fish-zooplankton prey gradient. The same benthic fish-zooplankton arrangement 264 

also occurred in some larger size classes (40-49 cm in strata B, C, E and A; ≥50 cm in strata A, B 265 

and F), but not for 40-49 cm size classes in stratum D and E. Stratum F Kamchatka Flounder ≥50 266 

cm were dissimilar from other ≥50 cm groups and were associated with the benthic fishes vector.     267 

 = 0).   254 

 Arrowtooth Flounder groups consumed higher proportions of zooplankton than 268 

Kamchatka Flounder in 100% of pairwise comparisons (sign-test; P < 0.001, n = 19). Stratum A 269 

pairs were tied and omitted from sign-tests because neither group consumed zooplankton. 270 

Kamchatka Flounder were more likely to have a higher proportion of benthic fishes in the diet 271 

than Arrowtooth Flounder (sign test; P < 0.05, n = 21). Kamchatka Flounder groups had a higher 272 

proportion of benthic fishes in their diet than Arrowtooth Flounder in 76.2% (16/21) of pairwise 273 
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comparisons. There were no evident size or stratum trend for the 23.8% (5/21) of pairs where 274 

Arrowtooth Flounder consumed more benthic fishes. 275 

 Interspecific differences in PFIi and %Fi were generally consistent with patterns of 276 

trophic niche separation observed in multivariate analyses. Significant differences (P < 0.05) in 277 

PFIi were detected in 31 out of 154 flounder group comparisons (Fig. 4; Table S.1). Mean 278 

PFIzooplankton and %Fzooplankton were higher for Arrowtooth Flounder than Kamchatka Flounder for 279 

100% (19/19) of pairwise comparisons, and there were 11 statistically significant differences in 280 

PFIzooplankton. Mean PFIbenthic_fishes was higher for Kamchatka Flounder in 76.2% (16/21) of group 281 

comparisons, there were seven statistically significant differences in PFIbenthic_fishes, 282 

and %Fbenthic_fishes was higher in Kamchatka Flounder for 76.2% (16/21) of comparisons. 283 

Significant differences in PFI were also identified for shrimp, Gadidae, benthic invertebrates, 284 

miscellaneous pelagic, and unidentified fishes. Kamchatka Flounder ≤39 cm had higher mean 285 

PFIshrimp and %Fshrimp in 90.9% (10/11) of group comparisons, among which five statistically 286 

significant differences in PFIshrimp were observed. PFIshrimp was significantly higher for 40-49 287 

cm Arrowtooth Flounder in stratum A, but shrimp were only a minor contributor to total 288 

consumption. PFIGadidae was higher for Arrowtooth Flounder in one comparison, and higher for 289 

Kamchatka Flounder in two comparisons. PFIbenthic.inverts was higher for 30-39 cm Kamchatka 290 

Flounder in stratum E, but contributed very little to overall consumption. PFImisc_pelagic was 291 

significantly higher for ≥50 cm Kamchatka Flounder in stratum F. PFIfish_unid

 297 

 was higher for 20-292 

29 cm Arrowtooth Flounder in stratum E, and higher for ≥50 cm Kamchatka Flounder in stratum 293 

F. Despite the preponderance of significant differences in PFI, significant interspecific 294 

differences in TFI only occurred in stratum B, for 30-39 cm, 40-49 cm and ≥50 cm size classes 295 

(Table S.2). 296 

DISCUSSION 298 

Our findings indicate trophic niche separation occurs between Arrowtooth Flounder and 299 

Kamchatka Flounder at smaller sizes (≤39 cm) until trophic niches converge ontogenetically. 300 

Trophic niche partitioning is consistent with hypothesized differences in foraging efficiency due 301 

to gill raker functional morphology. Arrowtooth Flounder examined for this study consumed 302 

more zooplankton than Kamchatka Flounder, and small-sized to medium-sized Kamchatka 303 

Flounder consumed more benthic fish than small-sized to medium-sized Arrowtooth Flounder.  304 
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Some diet overlap occurred between species of the same size class and the degree of 305 

trophic niche separation between species varied among strata. Multiple factors likely contributed 306 

to spatial variation in trophic niche separation. Diet overlap is common among allied resource 307 

competitors because diet is jointly influenced by foraging capability and prey availability 308 

(Amundsen et al. 2004; Chavarie et al. 2016). Greater diet overlap often occurs when a shared 309 

prey resource is abundant and available. As resource competition increases, aggregate trophic 310 

niche breadth can increase (Svanbäck and Persson 2004) and morphology-based resource 311 

partitioning can become more pronounced (Svanbäck and Bolnick 2007). Hypothetically, this 312 

would increase trophic niche separation between Arrowtooth Flounder and Kamchatka Flounder. 313 

However, causes of spatial variation in niche separation cannot be determined because prey 314 

abundances are not known. Thus, in stratum B, the comparatively high trophic niche overlap 315 

could be due to either an abundance of preferred resources, or a scarcity of alternate resources.  316 

A notable exception to the shrimp-gadid ontogenetic shift was evident for Stratum F 317 

Kamchatka Flounder ≥50 cm, which may reflect a non-trophic dimension of ecological niche 318 

separation between Arrowtooth Flounder and Kamchatka Flounder. With increasing depth, 319 

Kamchatka Flounder abundance increases relative to Arrowtooth Flounder abundance on the 320 

continental slope, and Arrowtooth Flounder become scarce on the outer continental slope (600-321 

1200 m; Zimmermann and Goddard 1996). Consequently, Stratum F Kamchatka Flounder ≥50 322 

cm were sampled from deeper (mean: 474 m, SD: 72 m) than Stratum F Arrowtooth Flounder 323 

≥50 cm (mean: 405 m, SD: 98 m), so interspecific diet differences may reflect depth-dependent 324 

changes in prey availability, including the lower PFIGadidae

Interspecific differences in fullness indices and prey frequency of occurrence were 332 

consistent with our finding of trophic niche divergence linked to morphology, but also produced 333 

two surprising outcomes which may warrant further investigation of interspecific ecological 334 

differences. While the large number of comparisons we made increased the potential for Type I 335 

 for stratum F Kamchatka Flounder. 325 

The primary aim of this analysis was to determine whether trophic niche separation occurs in 326 

sympatry, so the outer continental slope was excluded from analysis. However, the Kamchatka 327 

Flounder diet on the outer continental slope (600-1200 m) is distinct from strata included in this 328 

analysis, and the stratum F diet may resemble a transitional diet between the inner and outer 329 

continental slope. On the outer slope, the diet of Kamchatka Flounder ≥ 50 cm is dominated by 330 

deep-water benthic fishes (Fig. S.1; Bothrocara spp., Macrouridae).  331 A
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errors, repeat differences in prey-specific PFI comparisons and highly significant differences in 336 

PFI for important prey types are noteworthy. Higher PFIshrimp and %Fshrimp for Kamchatka 337 

Flounder ≤39 cm may be due to greater benthivory by Kamchatka Flounder, although we were 338 

unable to determine whether differences were due to consumption of greater numbers of the 339 

same shrimp taxa, larger shrimp, a broader diversity of shrimp taxa, or a combination of factors. 340 

Counting prey shrimp was not a standard protocol for laboratory analysis, the number of 341 

available prey size measurements was not adequate to make interspecific comparisons of shrimp 342 

size, and an insufficient proportion of shrimp were identified to a taxonomic level suitable for 343 

more detailed prey categories. Dominant EBS shrimp taxa include a combination of benthic 344 

(families Crangonidae, Hippolytidae), pelagic (family Pasiphaeidae, Sergestidae), and semi-345 

pelagic (family Pandalidae) taxa (Wicksten 2012), and both flounders consume shrimp from all 346 

major EBS families (Yang and Livingston 1986; Yang 1995; Orlov and Moukhametov 2004). 347 

For larger-sized flounders (40-49 cm, ≥50 cm) in Stratum B, interspecific differences in 348 

PFIGadidae were explained by higher %FGadidae in non-empty Kamchatka Flounder stomachs, but 349 

we were unable to determine why the difference in %FGadidae

Environmental variation influences community spatial structure in the EBS across 355 

seasonal and inter-annual temporal scales (e.g. Mueter and Litzow 2008; Kotwicki and Lauth 356 

2013; Barbeaux 2017). During summer months, the spatial distribution of many commercially 357 

and ecologically important species is influenced by the cold pool, an area with near bottom water 358 

temperatures ≤ 2ºC which approximately reflects the southern extent of winter sea ice and 359 

persists through summer months (Mueter and Litzow 2008). During some years, this limits 360 

distributions of Arrowtooth Flounder and Kamchatka Flounder to the outer continental shelf, 361 

because they avoid the cold pool (Spencer 2008; Barbeaux and Hollowed 2018). On the EBS 362 

shelf (but not the slope), Kamchatka Flounder ≥40 cm tend to occupy slightly colder habitat than 363 

Arrowtooth Flounder ≥42 cm (Barbeaux 2017; Barbeaux and Hollowed 2018). Hypothetically, 364 

during cold years, this may allow comparatively higher overlap of large Kamchatka Flounder 365 

with cold-tolerant Gadid prey (Walleye Pollock), than for large Arrowtooth Flounder. While diet 366 

 occurred. Potential explanations 350 

include interspecific differences in allometric scaling of size-structured interactions, feeding 351 

activity level, aspects of the prey search-detection-capture sequence, rates of digestion, feeding 352 

chronology, or spatial overlap with prey on a finer spatial scale than we considered in our 353 

analysis.  354 
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data in the present study included both cold (2007-2013) and warm (2014-2016) years, 367 

Kamchatka Flounder sample sizes were not sufficient to compare concurrent interspecific shifts 368 

in diet over time.  369 

It is unclear how Arrowtooth Flounder diet shifts relative to Kamchatka Flounder diet as 370 

the environment and prey availability change. Discrete sampling of Arrowtooth Flounder and 371 

Kamchatka Flounder would improve understanding of how environmental variability influences 372 

diet composition. In the Gulf of Alaska, zooplankton contribution to Arrowtooth Flounder diet is 373 

highest during spring, when zooplankton are most abundant (Knoth and Foy 2008). No 374 

analogous seasonal comparison of Kamchatka Flounder diet has been conducted. Stable isotope 375 

analysis would extend the temporal range of summer sampling, improve understanding of 376 

benthic and pelagic trophic pathway duration, and provide a relative measure of trophic position 377 

between species. In the Gulf of Alaska, Arrowtooth Flounder trophic position, inferred from bulk 378 

∂15

Support for the hypothesized association between morphology and diet is ample. 381 

Sympatric benthivore and planktivore polymorphs have been identified in gasterosteids (McPhail 382 

1984; Taylor and McPhail 2000), osmerids (Taylor and Bentzen 1993), salmonids (Foote et al. 383 

1999; Guiguer et al. 2002; Chavarie et al. 2016), and coregonids (Amundsen et al. 2004; Østbye 384 

et al. 2005; Gowell et al. 2012).  Gill raker functional morphology has repeatedly been linked to 385 

adaptive resource partitioning between benthivore and zooplanktivore polymorphs in freshwater 386 

ecosystems (Schluter and McPhail 1992; Wimberger 1994; Smith and Skúalson 1996). In marine 387 

systems, gill raker functional morphology has been linked to prey size divergence between 388 

sibling planktivores (e.g. Castillo-Rivera et al. 1996), but had not previously been linked to 389 

benthivory-zooplanktivory resource partitioning.  Regardless of prey type consumed, foraging by 390 

both species of Atheresthes likely occurs near-bottom, in contrast with common patterns of 391 

habitat partitioning between demersal foraging benthivore morphs and pelagic foraging 392 

zooplanktivore morphs in freshwater systems.  393 

 N ratios was lower during years when euphausiids were unusually abundant in stomach 379 

samples (Marsh et al. 2015). 380 

A morphological mechanism for trophic niche separation implies niche specialization 394 

should persist across the ranges of Arrowtooth Flounder and Kamchatka Flounder. Throughout 395 

the range of Arrowtooth Flounder, euphausiids (zooplankton) are frequent prey and often 396 

contribute substantially to overall diet, especially among Arrowtooth Flounder ≤39 cm (Gotshall 397 
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1969; Rose 1980; Yang and Livingston 1986; Yang 1995; Buckley et al. 1999; Knoth and Foy 398 

2008).  By contrast, euphausiids are uncommon or unimportant in Kamchatka Flounder diet 399 

(Yang and Livingston 1986; Orlov 1997; Orlov and Moukhametov 2004). While ecosystem 400 

dynamics and prey availability certainly vary across the North Pacific, diet differences 401 

throughout the species’ ranges support the association between gill raker morphology and trophic 402 

niche separation. 403 

Unlike gill rakers, the morphological difference in left-eye position between the two 404 

species does not have a clear association with the observed pattern in benthivory-zooplanktivory 405 

resource partitioning. The position of the left eye of Arrowtooth Flounder (more 406 

zooplanktivorous), intersecting the dorsal margin (Yang 1988), suggests a field of view that may 407 

encompass more of the benthos than that of Kamchatka Flounder (more benthivorous). The eye 408 

position in flatfish is less indicative of specific feeding behaviors than other morphological 409 

characteristics and specializations (Gibb 1997; Bergstrom and Palmer 2007), so this may be due 410 

to random phenotypic divergence. However, we speculate on the possibility that the marginal 411 

position of the left eye in Arrowtooth Flounder may result from parasite mediated selection by 412 

the pathologic copepod, Phrixocephalus cincinnatus (Wilson, 1908). A high percentage of 413 

Arrowtooth Flounder off British Columbia, Canada, become infected with this parasite (Kabata 414 

1969; Blaylock et al. 2005). The right eye was more commonly infected than the left eye (the eye 415 

nearer the dorsal margin) in Arrowtooth Flounder (Kabata 1969; Blaylock et al. 2005), but 416 

infection rates of Pacific Sanddab Citharichthys sordidus, having eyes located nearly level on the 417 

eyed-side of the head, have similar infection rates of the left and right eyes (Perkins and Gartman 418 

1997). Binocular infections by this copepod certainly lead to death (Kabata 1969; Perkins and 419 

Gartman 1997) while monocular infections may also result in substantial impairment of the host 420 

(Blaylock et al. 2005).  However, a captured Pacific Sanddab, was observed to survive the 421 

monocular infection and completion of the life cycle (death) of the parasite, and it grew as fast as 422 

uninfected Pacific Sanddabs also in captivity (Perkins and Gartman 1997). There are no reports 423 

in the literature of a similar pathology for Kamchatka Flounder in the western North Pacific 424 

Ocean. If marginal eye position imparts increased host-survival of infections by pathologic 425 

copepods at minimal or no associated energetic cost, the trait would be beneficial to a population 426 

that suffers high rates of infection and could be maintained in the absence of the parasite (Ebert 427 

2005).  428 
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Evolutionary mechanisms which initially led to trophic niche separation between 429 

Arrowtooth Flounder and Kamchatka Flounder are unclear because the evolutionary history of 430 

the genus Atheresthes is not known. Sympatric speciation caused by resource-driven character 431 

displacement may be possible, although an allopatric origin is more likely considering the glacial 432 

history of the North Pacific. Glacial isolation during the Pleistocene epoch has been suggested as 433 

the reason for east-west genetic population structures in Pacific Cod (Canino et al. 2010) and 434 

Pacific Herring (Liu et al. 2011) in the North Pacific. There is a clear genetic difference between 435 

Arrowtooth Flounder and Kamchatka Flounder and no evidence of interspecific hybridization 436 

(Ranck et al. 1986; De Forest et al. 2014). However, the genetic difference between species is 437 

minor, suggesting recent speciation (Ranck et al. 1986). Although genetic studies have been 438 

conducted to validate species identities in Atheresthes, more thorough investigation of genetic 439 

population structure is necessary to elucidate patterns of phylogenetic divergence. 440 

Ecological niche width imposes a constraint on population growth (Hutchinson 1957; 441 

Schoener 1974), so a broader combined trophic niche for smaller Arrowtooth Flounder and 442 

Kamchatka Flounder size classes may facilitate a higher carrying capacity than might be 443 

expected under trophic niche equivalence. An important consequence of higher Atheresthes 444 

carrying capacity is elevated predation pressure, which may dampen recruitment of 445 

commercially important Walleye Pollock in the EBS (Mueter et al. 2011; Holsman et al. 2015; 446 

Spencer et al. 2016). Predation on Walleye Pollock may be especially impactful during warm 447 

years, when higher bottom temperatures allow greater Arrowtooth Flounder and Kamchatka 448 

Flounder spatial overlap with juvenile Walleye Pollock (Mueter et al. 2006; Kotwicki and Lauth 449 

2013; Spencer et al. 2016; Barbeaux 2017). Warm year frequency is expected to increase due to 450 

climate change, and the potential corollary of increased predation on Walleye Pollock is a 451 

management concern, so modeling efforts have sought to forecast climate-mediated shifts in 452 

Walleye Pollock predation mortality (Mueter et al. 2011; Holsman et al. 2015; Spencer et al. 453 

2016). Separately considering demographic changes and diet compositions for Arrowtooth 454 

Flounder and Kamchatka Flounder could improve ecosystem (energy flow) models. While 455 

abundances of sympatric Arrowtooth Flounder and Kamchatka Flounder increased concurrently 456 

in recent decades, ecological niche partitioning, including trophic niche divergence, suggests 457 

future responses to ecosystem change may differ between species.  458 
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Our study contributes to understanding of interspecific differences in the life history and 459 

ecology of Arrowtooth Flounder and Kamchatka Flounder in their sympatric range. Although 460 

larval traits and spatial-temporal dispersal patterns overlap (De Forest et al. 2014) and both 461 

species exhibit a shift towards deeper water with increasing size and age (Zimmermann and 462 

Goddard 1996), Arrowtooth Flounder grow faster and mature at a smaller size and younger age 463 

than Kamchatka Flounder (Stark 2012). In addition, large Kamchatka Flounder tend to be 464 

distributed at greater depths and in warmer oceanic waters than large Arrowtooth Flounder 465 

(Zimmermann and Goddard 1996). Through an accumulation of dietary data (Livingston et al. 466 

2017), we find evidence against trophic equivalence between species, and identify an 467 

interspecific difference in trophic niche consistent with hypothesized variation in foraging 468 

efficiency due to divergent gill raker morphology.  469 

 470 
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 707 

TABLE CAPTIONS 708 

Table 1. Sample sizes stomachs sampled per year, by species and survey. Numerator indicates 709 

the number of non-empty stomachs, denominator indicates total number of stomachs, number in 710 

parentheses indicates percentage of non-empty stomachs. Dashes (-) indicate no bottom-trawl 711 

survey was conducted. 712 

 713 

Table 2. Sample sizes of stomachs for flounder groups, assigned by species, spatial stratum, and 714 

size class. Numerator indicates the number of non-empty stomachs, denominator indicates total 715 

number of stomachs, number in parentheses indicates percentage of non-empty stomachs. 716 

Italicized groups, with sample sizes <10, were excluded from analysis.  717 

 718 

Table 3. Pairwise ANOSIM R statistics (lower diagonal) for the four relevant predator clusters 719 

(W, X, Y, Z) identified using complete linkage clustering. Significance levels denoted by: P < 720 

0.1 (^), P < 0.05 (*), P < 0.01 (**), P < 0.001 (***). SIMPER results (upper diagonal) indicate 721 

which prey categories cumulatively contribute ≥ 70% of between-cluster dissimilarity, ranked by 722 

contribution. Prey categories are: BF – Benthic fish, GA – Gadidae, SH – Shrimp, ZP – 723 

Zooplankton. 724 

 725 

TABLES 726 

Table 1. 727 

 

Arrowtooth Kamchatka 

Year Shelf Slope Shelf Slope 

2007 582/789 (73.8) - 18/18 (100) - 

2008 313/568 (55.1) 67/270 (24.8) 124/156 (79.5) 42/97 (43.3) 

2009 191/388 (49.2) - 21/27 (77.8) - 

2010 395/628 (62.9) 122/197 (61.9) 20/34 (58.8) 49/78 (62.8) 

2011 493/881 (56) - 24/46 (52.2) - 

2012 365/585 (62.4) 96/202 (47.5) 145/190 (76.3) 45/88 (51.1) 

2013 418/733 (57) - 75/102 (73.5) - 

2014 442/607 (72.8) - 49/68 (72.1) - 
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2015 456/948 (48.1) - 164/246 (66.7) - 

2016 722/1,411 (51.2) 106/320 (33.1) 181/289 (62.6) 37/144 (25.7) 

Overall 4,377/7,538 (58.1) 391/989 (39.5) 821/1,176 (69.8) 173/407 (42.5) 
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Table 2. 729 

 

Stratum 

Predator A B C D E F 

Arrowtooth flounder 

     ≤19 cm 133/158 (84.2) 55/88 (62.5) 127/165 (77.0) 120/178 (67.4) 

20-29 cm 1/1 (100.0) 179/260 (68.8) 97/174 (55.7) 200/387 (51.7) 260/501 (51.9) 4/7 (57.1) 

30-39 cm 6/8 (75.0) 336/470 (71.5) 116/180 (64.4) 194/396 (49.0) 202/484 (41.7) 64/120 (53.3) 

40-49 cm 19/21 (90.5) 560/748 (74.9) 161/242 (66.5) 152/352 (43.2) 227/513 (44.2) 105/316 (33.2) 

≥50 cm 12/18 (66.7) 674/1015 (66.4) 155/252 (61.5) 131/379 (34.6) 260/548 (47.4) 218/546 (39.9) 

Kamchatka flounder 

     ≤19 cm 20/26 (76.9) 1/3 (33.3) 21/31 (67.7) 15/28 (53.6) 0/1 (0.0) 

20-29 cm 60/83 (72.3) 11/18 (61.1) 21/32 (65.6) 31/50 (62.0) 3/6 (50.0) 

30-39 cm 7/7 (100.0) 88/124 (71.0) 35/55 (63.6) 31/57 (54.4) 25/63 (39.7) 8/27 (29.6) 

40-49 cm 23/29 (79.3) 164/198 (82.8) 74/104 (71.2) 11/18 (61.1) 19/33 (57.6) 49/143 (34.3) 

≥50 cm 21/26 (80.8) 87/105 (82.9) 48/63 (76.2) 5/9 (55.6) 3/14 (21.4) 113/230 (49.1) 
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 731 

Table 3. 732 

Cluster W X Y Z 

W   GA,SH,BF GA,ZP,SH SH,GA,BF 

X 0.92***   GA,SH,ZP GA,SH 

Y 0.91*** 1.00**   SH,ZP,BF 

Z 0.98** 1.00*** 0.33^   

 733 
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