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ABSTRACT
Arrowtooth*HounderAther esthes stomias and Kamchatka Floundéther esthes evermanni are

upper trophic level predatovghich have been considered trophically equivaletihéir
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sympatric rangekere we present evidence agaimsiphic equivéenceof these sibling species
based on floundesize and spaestratifiedanalyseof stomach contents data from 5,724
flounders sampletfom theeastern Bering Sea (EBS) during summer 2007-2016. We found
interspecifictrophic nicheseparatioroccurred between flounde£39 cm fork length, before
convergencatlarger size classe®ur findings &e consistent with th@ypothesis thabraging
efficiency differences arisgue todivergence irgill raker couns. Arrowtooth Hounder have
more gill rakers'thaKkamchatka Flounder arabnsistentliconsumed moreooplankton than
Kamchatka'Flounder, while Kamchatka Floungygrically consumednorebenthic fishes. While
a kenthivory-zogoplanktivory axis of resource partitioning is common amgmgatric trophic
polymorphs insfreshwater ecosystems, our findings are howvelarine sibling species and
flatfishes(Pleuronectiformes). Abundance estimates for both Arrowtooth Floander
Kamchatka Flounder hawibstantially increased Waska inrecentyears and we suggest
trophic nicheseparation alleviatasterspecific competitin, which maybuffer sympatric
carrying capacities foArrowtooth Flounder and Kamchatka Flounder.

INTRODUECTION

Arrewtooth Hounder Atheresthes stomias andKamchatkaFlounder Atheresthes
evermanni are largemouth flatfishes, sympatric in the Bering Sea, Aleutian Islands and
southwestern Gulf of Alaska. Morphological differences between species are subttbasuch
field identification confidenceuringstock assessamt surveys conducted by tNational
Marine Fisherieés Serviogas only moderate through 2008 (Stevenson and Hoff 2009). The
primary morphological differences are the position of the left eye, which is on te dargin

of the body in Arrowtooth Flounder and below the dorsal margin in Kamchatka Flounder, and

higher gill raker,counts on each of the first three gill archésriowtooth Flounder
(Wilimovsky.etal. 1967; Yang 1988%ill rakers of both species are latsteaped and of
moderate lengtllyang 1991) but Arrowtooth Flounder have a combined 28-37rgiers on the
first three gill arches (mean: 31,4hile Kamchatka Flounder have 19-88l rakers (mean:
24.8; Yang 1988M.S. Yang unpublished data).

Interspecific morphological differences suggest foraging capabilitidéalgto differ
betweerArrowtooth Flounder and Kamchatka Flounder which, hypotheticallyidcconfer a
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mutually beneficiakcological advantagehere they cabccur Phenotypic divergence of feeding
structures is common amosgmpatricsibling species andonspecificpolymorphs (Smith and
Skudalson 1996; Ward et al. 200@ndcan facilitate alleviation of resourcempetition through

resource specializatig@®wanson et al. 2003). common patterof niche separatioaccurs

betweersympatricbenthic specialists and zooplankton specialists, where zooplankton specialists

have higher gill raker counf§vVimberger 1994; Smith and Skualson 1998itincrease capture

efficiency for'smaHlbodied zooplankton prey (MacNeill and Brand 1990; Sanderson et al. 1991;

Link and Hoff'1998; Roesch et al. 2013). Thaisowtooth Floundemay be more efficient
zooplankton consumers than Kamchatka Flounder. However, th@ror comparative diet
studybetweenrspeciesoncluded Arrowtooth Flounder and Kamchatka Flourder‘trophically
equivalent;”and that interspecific competition was unlikely to be important duleigh a
abundance of prey resourdagheeastern Berig SegYang and Livingston 1986).

In this paper, we re-examine the trophic equivalency of Arrowtooth Flounder and
Kamchatka Flounddn the eastern Bering Sea (EB&jng a larger datset than was available
for the earlierreomparative diet studfang and Livingston's (1986) study design may not have
allowed detection of interspecific trophic niche differenoesause thir available sample size
was relatively small, covered a limited spatial extent, and was colléctad) a tweweek
period in.assingle year. In addition, the importance of resource competition bettheesthes
has likely increased sindéang and Livingston's (1986) stubgcauseggregatérrowtooth
FlounderandKamchatka Flounddsiomass has increased fedwotd within their sympatric range
(Spies et al#2016; Wilderbuer et al. 20183sed orspatial biomass trend8ador et al. (2011)
suggestedhatArrowtooth Floundermay be near carrying capacitysome parts of the EBS
Under these conditionsgsource competition may have increased,thaexpressioof
morphology-based resource partitioningtrophic niche separatiohetweenArrowtooth
FlounderandKamchatka Flounder may be more pronounced (Svanback and Bolnick 2807).
such,we address three main questions

1. Datthe trophic niches ohrrowtooth FloundeandKamchatka Floundettiffer within

their. sympatric range?

2. If so, dbes trophic niche separation persigatiallyandacrosgredator size classes?

3. Are patterns of trophic niche partitioning consistent with expectation based on

interspecific differences in feeding structure morphology?
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METHODS

Sudy area.and sample collection

The_eastern Bering S€EBS)is a large coastal ecosystem withraad (~500 km)
continental.shelthat gradually increases in depth to ~29(efore an abrupt depth increase
along the continental slope into theegh Aleutian BasifFig. 1). Strong seasonal dynamics and
inter-annual’environmental variability influen&8S communityspatialstructure.

Diet data used in this study were collected dusmgmer (June-August) bottotraw!
surveys conducteldy NOAA'’s Alaska Fisheries Science Cenfrem 2007 through 2016.
Bottom+rawl surveysof theEBS shelfwere conducted annually (e.g., see Conner et al. 2017),
and bottomirawl surveg of the EBS sloperere conducted bienniallgxcept 2014 (Hoff 2016).
Survey designs and sampling gddfered for theEBS shelf and EBS slope due to differences in
stock assessent needs and substrate types. EB8& shelf surveysampledacross a regularly
spaced grid(20 nmi x 20 nmi) of 376 stations, at ~15-200 m bottom depth, with higher density
sampling in areas of historically high crabundance around St. Matthew, St. Paul and St.
George Islands (Lauth and Nichol 201B8BSslope survewgamples wereandomly stratified by
subareas-andepth (200-1200 m), and ~200 stations were sampled per ttoE#\2013)

Stomachsvere collected from specimens #theresthes at a subset agurveystations
following a sizestratified sampling schenfeivingston et al. 2017)JUp to 15stomachs were
collected per'stationFish were examined for evidence of regurgitation (i.e., prey in the mouth,
flaccid stomaeh) or neeeding (i.e., undigested prey in the mouth), and whole stomachs were
sampledrom fish not displaying evidence of regurgitation or net-feedingd&or species, fork
length(cm), sexand collection location were recorded for each sangttemachs weréxed in
neutral-buffered 10% formalin, then transferred to 70% ethanol for storagegpstomach
contents analysis. Stomach samples used for this study were collected during 2007-2016 EBS
shelf surveys;and 2008, 2010, 2012 and 2016 EBS slope surveys. An average of 518 non-empty
Atheresthes'stemachs were sampled per EBS shelf survey, and an average of 137 non-empty
stomachs were sampled per EBS slope survey (Table 1).

Stomach contents analysis was performed by analysts Res@urce Ecology and
Ecosystem Modeling Taskrophic Irteractions Laboratory at NOAAAlaska Fisheries Science
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Center AFSC; Seatté, WA) following standardized laboratory protocglsvingston et al. 2017).
Briefly, prey items wereédentified to the lowest practical taxdish and crab prey were

enumeratedand prey weights were recorded to the nearest milligram.

Data analysis

Multivariate analyses were used to comgesphic niche variatiothetween species, over
flounder'size'and space, based on broad prey catedemggscategoriewere assignetlased on
a priori knewledge of important prey categories identified in previousstiigtiesof Arrowtooth
FlounderandKamchatka Floundebenthic fishesassortegelagic fishes and squids, gadids
(Family Gadidagmostly Walleye Bllock), shrimp (Suborders Dendrobranchiata and
Pleocyematajnidentified fishesnonshrimpbenthic invertbrates zooplanktor{mostly Order
Euphausiaceagnd ‘other” Stomachs containingsheries discards (offalvere omittedorior to
analysis (1.6% of stomachs). Flounder groups were aggregatpddgs size and spatial area.
Flounders'were divided into fiv@ze classes based on fork len@th9 cm, 20-29 cm, 30-39 cm,
40-49 cmgana50 cm) to allow interspecific comparisons betwetwunders expected to have
similar stomach capacity ardlet compositionSize classes were informed by the four size
classes€200.mm, 201-300 mm, 301-400 mm, >400 mm) used by Yang and Livingston (1986),
but were.adjusted based on size class designations used in NOAA'’s standardized stomach
sampling protocol (Livingstost al. 2017)along with the availability of moreamples from
largersized flounders for our analysBSpatialareas were dagnated usindive EBS shelf strata
(A-E) roughly*delineatingireas withdistinct oceanographifeaturesand community
compositions(Stauffer 2004), and a 200-600 m bottom depth stratum along the EBS slope
(stratum FFig. 1). Flounder grqus fromareas wherétheresthes werescarce, sympatry was
weak, orsample sizes were smé&l 10 non-empty stomachs) were excluded from analysis.
Overall, 10,110 specimens were assigned among 56 groups, of which 5,762 specimens from 55
groups had.ncemptystomachs (Table 2). Adequate sample sizes for analyses were available
for 46 groups‘containing 5,724 non-empty stomachs (Table 2). Proportional wet weights of prey

were calculated for the groups of non-empty flounder stomae¥s  s):
n:
Zjil Wi,j,k,l,s
nj i
Zji1 Z?=1 Wi,j,k,l,s

YWikis =
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whereW is wet weight of prey categoryfrom the stomach of floundgrflounder size clads
flounder species, and spatial stratur n; is the number of prey categories, amas the number
of non-empty stomachs collected for the flounder gréuBray-Curtis diet dissimilarity matrix
(Bray and_Curtis 195%yas calcuhted from the flounder group proportional diet data for
multivariate statistical analysis.

Hierarchicalclustering and ordinatiowere used for multivariate statistical analysis of
diet data Hierarchical clustering was conducted to determine which flounder gnadps
greatestlietsimilarity andto evaluate whiclgroupdimensions (size, straturor; flounder
species)nfluenceddiet similarity. Ordination was performed to determine the relative influence
of prey categories on differences betw#eander groups.

Similar-sized flounders have more similar diets than different-sized flounders, and a
strong ontogenetic shift from shrimp prey to fish prey has been identifiddh@esthes in the
EBS(Yang and Livingston 1986). Sindeet purpose of this analysis was to identify descriptive
differences.irflounder group association, rather than synoptic patterns of ontogenetic diet shift,
we used spaedilating hierarchical clustering algorithms (flexible beta witparameter varying
from-0.5 to -1:0, and complete linkage clusteritncrease contrast within size classes
Spacedilating algorithms may increase the likelihood of producing smaltgranclusters put
theycan.also preserve ecologiyameaningfuldifferencesy requiring anorestringent
criterionfor assigning clustemembershigfLegendre and Legendre 2012). We used cophenetic
correlationto_.compae clustering algorithm performanc®n appropriate number of clusters was
determinedfrom examination of a scree plot of cluster dissimilarity attained across a range of
clusters, and-through inddsased evaluation of relevant clusters using R packageltsb
(Charrad et al. 2014)

After relevant clusters weidentified an ANOSIM test was used test statistical
significance.ofglobal clustes. ANOSIM is a norparametric rantbased permutation test which
compares,withifcluster similarity to between cluster similar{tglarke 1993)The ANOSIMR
statistic ranges frorl to 1 and indicates the level of sianity between clusters, where 1
indicates alflounder groups within a cluster are ra@imilar to each other thandgooups from
other clusters, while an R of 0 indicates no diffeebetween clusterSignificant differences
between clusters were alsted using pairwise ANOSIM tests. Global and pair&N©SIM
tests used 999 random permutations to generate sample distributions for signié@stsice
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SIMPER analysig¢Clarke 1993)vas then used to determine which prey categories were most
different between clusters.
Non-metric multidimensional sding (NMDS) ordination (Kruskal 1964yas performed
on the diet dissimilarity matrito determine which pregategoriesvere associated witttounder
group dissimilarityNMDS was chosenver other ordination methods because predator group
diet data were.not multivariate normally distributed, and relative differdsetesen groups
were moré impoent than absolute differencé&andom starting placements (up to 100) were
used to find"a‘awvergent ordination solution, and appropriate number of dimensions for the
ordination k) was determinelly examiningstress values on a scree platr 1-8 k-dimensions.
Statigical significance of the finadrdination was tested using a random permutation test (999
permutations)@nd goodnessfitfwas evaluated based on the correlation between the observed
dissimilarity and ordinationigtance on a Shephard diagram. Prey loadings in ordination space
were calculated using linear correlation analysig, statistical significance of prey category
loadingsweretestedusing a random permutation teBifferences betweeftounder groups were
evaluated framyvisual inspection of NMDS pldfaNMDS plotsindicateda consistentliet
differencebetween interspecifitounderpairssharing size class and stratuartwotailed sign
test was eonducted to test the null hypothesiatefspecific trophic equivalen¢gar 1999).
Under thesnull hypothesis, a flounder group would be equally likdiave ahigher orlower
proportionof a prey type as its interspecific counterpart from the same size class and stratum.
Proportional wet weight of prey providagelative measure gfey contribution to diet
but does net'reflect absolute consumption of a prey fypensure that results multivariate
analyses weraot simplya reflection of interspecifibiasesin overallprey consumption, we
comparedstomach fullness indiceand prey frequency of occurren@K) among non-empty
stomachs to make interspeciiomparisons of consumptioRullness intcesfollowed Lilly
(1991)exceptin lieu of cubed lengthLf), we usedestimated flounder biomass calculated from
lengthweight regressionsV(j), available from NOAA/AFSC’s Grounndish TropHideractions

DatabasgLivingston et al. 2017)Total fullness indexTFI) wascalculated asT'F1; =

Z?=1 Wi; Mj‘1 “10*, whereW; is the wet weight of prey tyden flounder stomach M; is
estimateiomass of the flounder j, ar@is the number of prey categori€¥-1 was calculated
as PFl;; = Wl-JMj‘1 - 10%. Prey typegor PFI calculationsvere the same as for multivariate
analysesWhen adequate sample sizes were avail@ilé non-empty stomachsjested for
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213 significant interspecific differencdsetweerfullness indicedor size classstratumflounderpairs
214  using the twetailed Mann-Whitneytest.We used th@onparametridMann-Whitneytest

215 because fullness indekstributions weraon-normal andPFI had a high proportion of zeroes.
216

217 RESULTS

218 Preytypes consumed bArrowtooth FloundeandKamchatka Floundexere

219 qualitatively'similarand four hierarchical clustevgere relevant for describing predator diets
220 (Fig. 2). Complete linkage clusterii§garensen 1948yrovided the best hierarchical clustering
221 performance (cophenetic correlatidre 0.89).Cluster Wincluded mostly predators in 20-29 cm
222 and 3039 emysize classes, but alscludedStraum CArrowtooth Floundek19 cm and

223  Stratum AKamchatka Flounder 50 cm. Cluster Xhadthe largesgroup membershjpncluding
224  all large size classes (4® cm,> 50 cm) exceptCluster FKamchatka Floundet50 cm. Six

225 small and medium size classes were also in Clust@iuster Y only cotained the smallest size
226 class(<19 em), and included botbpeciesCluster Zcontained onlysmaller size class€s19 cm,
227 20-29 cm)efiKamchatka FloundeAll stratum B size class pairs showed concordargtel

228 membership,indicatingreatelinterspecificdiet overlap than in other stréftar whichat least
229 three sizesglasses were represendemong small ananedium size classesi(9 cm, 20-29 cm,
230 30-39 cm)sthe onlynterspecificpredatorgroup pair sharing cluster memberslapide from

231 stratum B, wer&0-39 cmsize classem stratum D. Overalinterspecific pairs of small and

232 medium size class predator groups were in diffeckrsters63.6% (7/11)of the time Within

233 Cluster W there was aonsicerabledistance between a branehereseven out of eight leaves
234 were mediumssize claggrowtooth Flounderand a monospecifiiamchatka Flounddsranch.
235 This difference occurreat a dissimilarity of 0.56slightly below the phenon line at 0.6.

236 Gadids, shrimp, zooplankton and benthic fishes contributed pitithf to between

237 cluster dissimilarity, but ranked contribution to differencesegchamong cluster pairs (Tablg 3
238 A global ANOSIM test revealed significant differences across clusex90(96,P = 0.001),and
239 five out of six'pairwiseANOSIM testsidentified significantandsubstantiadiet differences

240 between clusters (0.51R < 1.00; Table 3)Clusters Y and Z were not significantly different
241 althoughan ecological differenceasnot convincinglyrejecteddue to small cluster membership
242 and a low p-valueR = 0.09).

This article is protected by copyright. All rights reserved



243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

Important preycategoriesn the besNMDS ordinationwereconsistent with th@rey
categories thatontributed most to hierarchical clustissimilarity (Table 3Fig. 3. NMDS
diagnostics indicated a twdimensional K = 2) ordination was appropriate, and the ordination
resulted in atress value of 0.09 (Fig. 4). More of the variation was explained by the ordination
than expected.by random chanBe<(0.001) and fit to the data was good (moetricr® = 0.99).
Benthic fshes P < 0.001, ¥ = 0.37), gadidsK < 0.001,r? = 0.91), shrimpR < 0.001,r* = 0.71)
and zooplanktonR < 0.001,r* = 0.50) categories had highly significant vector loadings. Benthic
invertebratés®= 0.01,r> = 0.06), unidentified fishe$?(= 0.04,r*> = 0.02), and othei?(= 0.01,

r? = 0.05) prey categories had statidticaignificant vector loadingbut, compared to the highly
significantpreysvectorsid not account for much of thariation inordinationspace low r*-
values)so were omitted from the NMDS plEig. 3). Miscellaneous pelagic fishesdaquids
were not significant® = 0.31,r* = 0).

Shrimpand gadidvectors were divergent and weargso@ted with an ontogenetic shift in
diet (Fig. 3). SmallerAtheresthes were more strongly associated with the shrimp veegtbile
largerAtheresthes had a higher proportion of gadids in their diet. Zooplankton and benthic fish
preycategoriesveredivergentand were associated wittophic niche separation between
Arrowtooth.FloundeandKamchatka Flounder. Among small and medium floursitex classes
(<19 cm,.20-29cm, 30-39 cm) there was a consistent witlsinatum difference betwedn size
class pairs oArrowtooth Flounder and Kamchatka Flound&mrowtooth floundemwere more
strongly associated with zooplankton prey, and Kamchatka Flowstermore strongly
associatedwith, benthic fish presuggestingnterspecifictrophicniche separatioroccurred
alonga benthic'fishzooplankton prey gradienthe same benthic fishooplankton arrangement
also occurred in some larger size clasd4@s40 an in strataB, C, E and A>50 cmin strata A, B
and F), but not for 4@9 cm size classes in stratum D an&&atum FKamchatka Flounder50
cmwere dissimilafrom other>50 cm groupsnd were associated with the benthic fishegor.

Arrowtooth Flounder groups consumed higher proportions of zooplankton than
KamchatkasFlounder in 100% of pairwise comparigeigtest;P < 0.001,n = 19) Stratum A
pairs were tied and omitted frosigntestsbecause neither group consumed zooplankton.
Kamchatka Flounder were more likely to have a higher proportion of berghésfin the diet
than Arrowtooth Floundesign test < 0.05,n = 21). Kamchatka Flounder groups had a higher
proportion of benthic fishes in their diet than Arrowtooth Flouma&16.2% (16/21pf pairwise
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comparisonsThere were n@videntsize or stratum trenidr the 23.8% (5/21) of pairs where
Arrowtooth Floundeconsumed more benthic fishes.

Interspecific differences iRFIl; and%F; weregenerallyconsistent with patternsf
trophic niche separatiambserved in multivariate analyseSignificant differencesR < 0.05) in
PFIl; were detected in 31 out of 154 flounder group comparisons (Fig. 4; Tabl&8al).

PFI z00piankton:2NA%F s00piankion Werehigher for Arrowtooth Flounder than Kamchatka Flourfder
100% (19/19) opairwisecomparisons, anitherewere 11 statistically significanlifferences in
PF1 zo0plankién- MENPFI penthic_fisheswashigher for Kamchatka Flounder 76.2% (16/21pf group
comparisonsthere were sevestatistically significant differencea PFlyenthic_fishes

and%F penmic_sishes Was higher in Kamchatka Flounder for 76.2% (16/21) of comparisons.
Significantdifferences iRPFI were also identified for shrimp, Giade, benthic invertebrates,
miscellaneous pelagic, anahidentified fishes. Kamchatka Flound®9 ¢cm had higher mean

PFl shrimp @and%F srimp IN 90.9% (10/11) of group comparisons, amavigch five statistically
significant differenced PFl gimp Were observe®Fl 4vimp Was significantly higher for 40-49
cm ArrowteethsFlounder in stratum A, but shrimp were only a minor contributor to total
consumptionPFIl cagigae Was hidner for Arrowtooth Flounder in one comparison, and higher for
Kamchatka.Flounddan two comparisonsPFl penicinverts Was higher for 30-39 cidamchatka
Flounderinsstratum E but contributed very little to overall consumpti®ifrl misc peiagic was
significantly higher fo=50 cm Kamchatka Floundan stratum FPFlss wid was higher for 20-
29 cm Arrowtooth Flounder in stratum E, and higheefth cm Kamchatka Flounden stratum
F. Despite thespreponderancgsignificant differences iRFI, significantinterspecific
differencesunliFl only occurred in stratum B, for 30-39 cm, 40-49 cm aftlcm size classes
(Table S2).

DISCUSSION

Our findings indicate trophic niche separation oct@tsveerArrowtooth Flounder and
KamchatkasFloundeat smallersizes(<39 cm) until trophic niches convergantogenetically.
Trophic niche,partitioningsicorsistentwith hypothesized differences in foraging efficiency due
to gill rakerfunctional morphology. Arrowtooth Flounder examined for this study consumed
morezooplankton than Kamchatka Floundand smatkized tomediumsizedKamchatka
Flounder consumeghorebenthic fish thasmallsized tomediumsizedArrowtooth Flounder
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305 Some diet overlap occurred between species of the same sizerd#dssdegree of

306 trophicnicheseparation between speciesiedamongstrata Multiple factors likely contribute
307 to spatial variation in trophiciche separatiorDiet overlap iscommon amongllied resource

308 competitorshecausdliet is jointly influenced by foraging capability and prey availability

309 (Amundsen.et.al. 2004; Chavarie et al. 2016¢a®er diet overlapften occurs when a shared
310 prey resource.is abundant and availaBkresource competition increasaggregate trophic
311 niche breadtltanincreasgSvanback and Persson 20@4h)d morpholgy-based resource

312 partitioningcanbecome more pronounced (Svanback and Bolnick 26¢/f)othetically, this

313 would increase/trophic niche separation betw&eawtooth FloundeandKamchatka Flounder.
314 However, gauses of spatial variation in niche separation cannot be determined pexause
315 abundances are not known. Thus, in stratum B, the comparatively high trophic niche overlap
316 could be due toeither an abundance of preferred resources, or a scarcity of alternate resources.
317 A notableexception tahe shrimpgadidontogenetic shiftvasevident forStratumF

318 Kamchatka Flounder50 cm, whichmay reflecta non-trophic dimension of ecological niche
319 separationsbetweehrrowtooth Flounder and Kamchatka Flounder. With increasing depth,
320 Kamchatka Fleundeabundance increases relativeAtwowtooth Flounder abundance on the
321 continentakslopeand Arrowtooth Flounddsecomescarce on theuter continental slope (600-
322 1200 m; zZimmermann and Goddard 1996). Consequesitigtum AKamchatka Flounder50

323 cm weresampled frondeeper(mean: 474 m, SD: 72 nan Stratum RArrowtooth Flounder

324 >50 cm (mean: 405 m, SD: 98 m), sointerspecific diet differencawnayreflectdepthdependent
325 changes insprey availability, including the |owWRFl gagidae fOr stratum FKamchatka Flounder.
326 The primary=aim of thignalysis was to determine whether trophic niche separation occurs in
327 sympatry, sdhe outer continentalope was excluaEfrom analysisHowever theKamchatka
328 Flounderdiet on theoutercontinental slope (600-12@0) is distinct fromstrata included in this
329 analysis, and.the stratum F dieayresembleatransitional diet between the inner and outer
330 continental slopeOn the outer slope, the diet of Kamchatka Flourrl&® cm is dominated by

331 deepwater.benthic fishe@-ig. S.1 Bothrocara spp., Macrouridae

332 Interspecific differences in fullness indices gmdy frequency of occurrencegere

333 consistent with our finding of trophic niche divergence linked to morphology, but also produced
334 two surprising outcomes which may warrant further investigatfonterspecific ecological

335 differencesWhile the large number of comparisams madeancreasedhe potential forType |
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336 errors,repeatdifferences in preygpecificPFI comparisons and highly significant differences in
337  PFI for important prey types are noteworthy. HigR& svimp and%F svinmp for Kamchatka

338 Flounder<39 cm may be due tgreaterbenthivory byKamchatkaFlounder, although we were
339 unable to determine@hether differences wedrie toconsumption of greater numbers of the
340 same shrimp.taxdarger shrimp, a broader diversity of shrimp taxa, or a combinatifattors
341 Counting prey.shrimp was not a standard protocol for laboratory analysis, the number of
342 available prey'size measurements was not adequate to make interspecific comparisons of shrimp
343 size, and an‘insufficient proportion of shrimp were identified to a taxonomicsieitable for

344 more detailed pregategoriesDominant EBS shrimpaxainclude a combination of benthic

345 (families Crangonidae, Hippolytidae), pelagic (family Pasiphaeidae, Sidegdsand semi

346 pelagic (family*Pandalidag¢axa(Wicksten 2012), and both flounders consuiméngp from all
347 majorEBSfamilies(Yang and Livingston 1986; Yang 1995; Orlov and Moukhametov 2004).
348 For largersizedflounders (40-49 cn®50 cm) in Stratum B, interspecific dferences in

349  PFlgadidae Were explained by highe¥oF gadgigae in NoN-empty Kamchatka Floundgiomachsbut
350 we were unable to determine why the differemc®fF cagigae OCCUrred. Potential explanations
351 includeinterspecific differences iallometric scaling of sizstructured interactionggeding

352 activity level, aspects of the prey seaidbtectioncapture sequencetes of digestionfeeding
353 chronology;ospatialoverlap with preyn a finer spatial scale thae considered in our

354 analysis.

355 Environmental variation influences community spatial structurearE®S across

356 seasonal andiintemnual temporal scalés.g. Mueter and Litzow 2008; Kotwicki and Lauth
357 2013; Barbeaux 2017). During summer months, the spatial distribution of many contignercia
358 and ecologically important species is influenced by the cold pool, an area withotteanwater
359 temperatures 2°C which approximately reflects the southern extent of winter sea ice and

360 persists through summer months (Mueter and Litzow 2008). During some yedis)ithis

361 distributionsof Arrowtooth Flounder and Kamchatka Flounttethe outer continental shelf,
362 because they'avoid the cold pg8pencef008; Barbeaux and Hollowed 2018n the EBS

363 shelf (but net.the slope), Kamchatka Floure# cm tend to occupwlightly colder habitathan
364  Arrowtooth Floundepr42 cm (Barbeaux 201 Barbeaux and Hollowed 2018). Hypothetically,
365 during cold years, this may alloeomparativelyhigher overlap of large Kamchatka Flounder
366 with coldtolerantGadid prey \Valleye Pllock), than for large Arrowtooth FloundaWhile det
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data in the presestudy included both cold (2007-201&)d warm (20142016) years,
Kamchatka Floundesample sizes were not sufficient to compayecurrent interspecific shifts
in diet over time.

It is unclear howArrowtooth Floundediet shifts relative tiamchatka Floundetiet as
the environment and prey availability change. Discrete sampling of Arrowtooth Flaamdler
Kamchatka Flounder would improve understanding of how environmental variability influences
diet composition. In the Gulf of Alaska, zooplankton contribution to Arrowtooth Flouteteis
highest during'spring, when zooplankton are most abundant (Knoth and Foy 2008). No
analogous seasonal comparison of Kamchatka Flounder diet has been conducted. Sable isot
analysis weuldwextend the temporal range of summer sampling, improve understanding of
benthic and“pelagic trophic pathway duration, and provide a relative measure of pagtion
between species. In the Gulf of Alaskarowtooth Floundetrophic positioninferred from bulk
o™ N ratios was lower during years when euphausiids were unusually abundant irhstomac
samplegMarsh et al. 2015).

Supportifor the hypothesized association between morphology and diet is ample.
Sympatric benthivore and planktivore polymorpiase been identified in gasterostefifPhail
1984; Tayler and McPhail 2000), osmerids (Taylor and Bentzen 1993), saln(léoads et al.

1999; Guiguer et al. 2002; Chavarie et al. 2046 coregonidéAmundsen et al. 2004; Jstbye

et al. 2005; Gowell et al. 2012). Gill raker functional morphology has repeatedly beendinked t
adaptive resource partitioning between benthivore and zooplanktivore polynrofpgshwater
ecosystemgSehluter and McPhail 1992; Wimberger 1994; Smith and Skualson 1996). In marine
systems, gillraker functional morphology has been linked to prey size divergence between
sibling planktivorege.g. CastilleRivera et al. 1996), but had not previouiséen linked to
benthivory-zooplanktivory resourgartitioning. Regardless of prey type consumed, foraigyng
both species.ohtheresthes likely occurs near-bottom, icontrastwith common patterns of

habitat partitioning between demersal foraging benthivore morphs and pelagic foraging
zooplanktivere morphi freshwater systems.

A morphological mechanism for trophic niche separation implies niche specialization
should persist across the rangedwbwtooth Flounder and Kamchatka Flounder. Throughout
the range oArrowtooth Floundereuphausiid¢zooplankton) are frequent praynd often
contribute substantially to overall digispeally among Arrowtooth Floundet39 cm (Gotshall
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1969; Rose 1980; Yang and Livingston 1986; Yang 1995; Buckley et al. 1999; Knoth and Foy
2008). By contrast, euphausiids are uncommon or unimportant in Kamchatka Fidiender
(Yang and Livingston 1986; Orlov 1997; Orlov and Moukhametov 2004h)jle ecosystem
dynamics and prey availability certainly vary across the North Pacific, dietediffes
throughout.the species’ ranges support the association between gill raker morphdltgplac
niche separation.

Unlikegill rakers, the morphological differenceléft-eye position between the two
species doesnot have a clear associationthétbbservegattern in benthivorzooplanktivory
resource partitioning. The position of the left @yérrowtooth Floundefmore
zooplanktivoreus)intersectinghe dorsal margifYang 1988), suggests a field of view that may
encompass‘more of the benthos than that of Kamchatka Flounder (more benthiVdroege
position in flatfish is less indicatvof specific feeding behaviors than other morphological
characteristics and specializatiq@bb 1997; Bergstrom and Palmer 2007), so this may be due
to random phenotypic divergence. Howeveg, speculaten the possibilitythat the marginal
position ofsthesleft eye in Arrowtooth Flound®ey result from parasite mediated selection by
the pathologiescopepohrixocephal us cincinnatus (Wilson, 1908). A high percentage of
Arrowtooth.Eloundepff British Columbia, Canaddecome infected with this paragiiabata
1969; Blaylock et al. 2005). The right eye was more commonly infected than the |dgfieggd
neaer the dorsal marginn Arrowtooth Flounder (Kabata 1969; Blaylock et al. 2005), but
infection rates of Pacific&hddalCitharichthys sordidus, having eyesocated nearly level on the
eyedside ofthehead, havaimilarinfection rate of the leftand right eye¢Perkins and Gartman
1997). Binoeular infections by this copepod certainly lead to death (Kabata 1969; Perkins and
Gartman 199 7yvhile monocular infetions may also result in substantial impairmaithe host
(Blaylock et al. 2005). However, a captureacific Sanddab, was observed to survive the
monocular.infection andompletion of the life cycle (dedtbf the parasiteandit grewas fast as
uninfected RPacific &hddabslsoin captivity (Perkins and Gartman 1997There ae no reports
in the literature ba similar pathology foKkamchatka Floundan the westermMorth Pacific
Oceanlf marginaleye positiorimparts increased hastirvival of infections by pathologic
copepods atinimal or no associategnergetic costhe trait would be beneficial # population
that suffers high rates of infecti@md could be maintained in the absence op#rasitg Ebert
2005).
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Evolutionary mechanismshichinitially ledto trophic niche separation between
Arrowtooth FloundeandKamchatka Floundeare unclear because téeolutionary history of
the genu#theresthesis not known. Sympatric speciation caused by resodiieen character
displacement may be possible, although an allopatric origin is more likelydednsgi theglacial
history of the.North Pacific. Glacial isolation during the Pleistocene dpaxbeen suggested as
the reason. foeastwest genetic population structsrig Pacific Gd (Canino et al. 2010) and
Pacific Herring(Liu et al. 2011) in the North Pacifithere is a clear genetic difference between
Arrowtooth FloundeandKamchatka Flounder and no evidence of interspecific hybridization
(Ranck et al. 1986; De Forest et al. 20HQwever, the genetic difference between species is
minor, suggesting recent speciation (Ranck et al. 1986). Although gstueties have been
conductedtvalidatespecies identities Atheresthes, more thorough investigation of genetic
population structures necessary to elucidapatterns of phylogenetic divergence.

Ecological niche widthmposes a constraint on population growth (Hutchinson 1957,
Schoener'1974), ssobroadecombinedrophicniche forsmallerArrowtooth Flounder and
Kamchatka*Floundesize classemayfacilitate a highercarryingcapady than might be
expectedundertrophic niche equivalence. An important consequence of tieeesthes
carrying capacitys elevated predation pressure, whichy dampen recruitment of
commercially important Walleyeditock in the EBS(Mueter et al. 2011; Holsman et al. 2015;
Spencer et al. 2016). Predation on Walleye Pollock may be espetipfgtfulduringwarm
years, when higher bottom temperas allow greateArrowtooth Flounder andamchatka
Flounderspatial,overlap with juvenile WalleyeoRock (Mueter et al. 2006; Kotwicki and Lauth
2013; Spenecer‘et al. 2016; Barbeaux 200grm year frequency is expectedinaease due to
climate dhange, and thpotential corollary of increaseaedation on Walleyed#ock is a
managementoncern so modeling efforts have soughtféoecast climatenediated shifts in
Walleye Rllock predation mortalitfMueter et al. 2011; Holsman et al. 2015; Spencer et al.
2016). Separately considering demographic changes and diet compositions for Arrowtooth
FlounderandKamchatka Flounder could improve ecosystem (energy flow) modiise
abundances of sympaterowtooth FloundeandKamchatka Floundancreased conatently
in recent decades, ecological niche partitioning, including trophic niche dicergauggests

futureresponsegto ecosystem changeay differ between species.
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Our studycontributes tainderstanding of interspecific differences in the life historg
ecology ofArrowtooth FloundeandKamchatka Floundean their sympatric rangeAlthough
larval traits and spatiémporal dispersal patterns over(@ Forest et al. 2014) and both
species exhibit a shift towards deeper water with increasing size afdimggermann and
Goddard 1996), Arrowtooth Floundgrow faster and mature at a smaller size and younger age
thanKamchatka FloundgiStark 2012). In addition, large Kamchatka Flourtéded to be
distributedat'greater depths andMarmer oceanic watethan large Arrowtooth Flounder
(Zimmermann‘and Goddard 1996). Through an accumulation of dasgaglivingston et al.
2017), we find evidence against trophic equivaldreteveen specieandidentify an
interspecific differencén trophic nicheconsistent witthypothesized variation in foraging

efficiency due to divergertill raker morphology.
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TABLE CAPTIONS

Table 1.Sample sizes stomackampled per year, by species andvey Numerator indicates

the number of non-empty stomachs, denominator indicates total number of stomachs, number in

parentheses.indicates percentage oferopty stomach®ashes+) indicate no bottontrawl

survey was, conducted.

Table 2. Sample sizes of stomadbrflounder groups, assigned bgecies, spatial stratum, and

size classNumerator indicates the numbdrmmn-empty stomachs, denominator indicates total

number of.stemachs, number in parentheses indicates percentagesafiptygrstomachs.

Italicized groups, withample sizes <, were excluded from analysis.

Table 3 Pairwise ANOSIM R statistics (lowerational)for the four relevant predator clusters

(W, X, Y, Z) identified using complete linkage clusteringgriéficance leves denoted byP <
0.1 ("),P <0:05 (*), P <0.01 (**),P <0.001 (***). SIMPER reslts (upper diagonal) indicate

which prey*categies cumulativelycontribute> 70% of betweenrcluster dissimilarity, ranked by

contribution. Prey categories are: BBenthic fish, GA- GadidagSH- Shrimp, ZP —

Zooplankton.

TABLES
Table 1.
Arrowtooth Kamchatka
Y ear Shelf Slope Shelf Slope

2007 ,582/789 (73.8) - 18/18 (100) -
2008.::+313/568 (55.1) 67/270 (24.8) 124/156 (79.5) 42/97 (43.3)
2009...4191/388 (49.2) - 21/27 (77.8) -
20107 395/628 (62.9) 122/197 (61.9) 20/34 (58.8) 49/78 (62.8)
2012, 493/881 (56) - 24/46 (52.2) -
2012 365/585 (62.4) 96/202 (47.5) 145/190 (76.3) 45/88 (51.1)
2013  418/733 (57) - 75/102 (73.5) -
2014  442/607 (72.8) - 49/68 (72.1) -
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2015  456/948 (48.1) - 164/246 (66.7) -
2016 722/1,411 (51.2) 106/320 (33.1)  181/289 (62.6)  37/144 (25.7)
Overall 4,377/7,538 (58.1  391/989 (39.5)  821/1,176 (69.8) 173/407 (42.5)

728
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729 Table2.

Stratum
Predator A B C D E F
Arrowtoaoth.flounder
<19 cm 133/158 (84.2) 55/88 (62.5) 127/165 (77.0) 120/178 (67.4)
20-29cm  1/1(100.0) 179/260 (68.8) 97/174 (55.7) 200/387 (51.7) 260/501 (51.9) 4/7 (57.1)
30-39cm  6/8(75.0) 336/470 (71.5) 116/180 (64.4) 194/396 (49.0) 202/484 (41.7) 64/120 (53.3)
40-49cm 19/21 (90.5) 560/748 (74.9) 161/242 (66.5) 152/352 (43.2) 227/513 (44.2) 105/316 (33.2)
>50cm 12/18 (66.7) 674/1015 (66.4, 155/252 (61.5) 131/379 (34.6) 260/548 (47.4) 218/546 (39.9)

Kamchatka flounder
<19cm

20-29cm

30-39cm

40-49cm

>50 cm

7/7 (100.0)
23/29 (79.3)
21/26 (80.8)

20/26 (76.9) 1/3(33.3) 21/31(67.7) 15/28 (53.6) 0/1 (0.0)
60/83 (72.3) 11/18 (61.1) 21/32 (65.6)  31/50 (62.0) 3/6 (50.0)
88/124 (71.0) 35/55 (63.6) 31/57 (54.4) 25/63(39.7)  8/27 (29.6)
164/198 (82.8) 74/104 (71.2) 11/18 (61.1) 19/33 (57.6) 49/143 (34.3)
87/105 (82.9)  48/63 (76.2) 5/9 (55.6) 3/14 (21.4) 113/230 (49.1)

730
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Table 3

Cluster w X Y Z

W GA,SH,BF GA,ZP,SH SH,GA,BF
X 0:92*** GA,SH,Z2°» GA,SH
Y 0.91*** 1.00** SH,ZP,BF
Z 0.98** 1.00*** 0.33»
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